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Scattering theory in a time-dependent external field 
11. Applications 
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7 Department of Mathematics, University of Toronto, Toronto M5S 1A1, Canada 
$ FOM-Instituut voor Atoom- en Molecuulfysica, Kruislaan 407, Amsterdam/Wgm, The 
Netherlands 

Received 25 September 1973 

Abstract. The general theory of the scattering of two particles in a time-dependent external 
field, presented in paper I, is applied to the case of two point particles with internal structure 
which interact through a potential with matrix representation { bf(r)}. Under suitable, 
quite general, conditions upon the 1' operator bound I V(r)( of { Kf(r)} the existence of the 
wave operators S2,(s) is proven for two field configurations. The first is that of a spatially 
homogeneous time-dependent field, whereas in the second case the field is inhomogeneous 
but localized in space. Some attention is paid to the problem of the existence of differential 
cross sections and their relation to the scattering operator S(s) = n*,(s)n~(s). 

1. Introduction 

In the present paper we continue the discussion of the quantum-mechanical scattering 
of particles in the presence of a time-dependent external field (PrugoveEki and Tip 1974, 
to be referred to as I). References to  formulae and theorems of paper I are given in the 
form (1-2.3) and theorem 1-3.1, for example. Here we will apply the general formalism 
set u'p in I to the case of two neutral point particles with internal structure which collide 
with each other in the presence ofan external field. The model we use is the one discussed 
in I ,  0 1. We shall consider two special forms of the external field contribution to the 
hamiltonian. In 5 2 we prove the existence of the wave operators under suitable assump- 
tions on the interaction potential for the case of a spatially homogeneous time-dependent 
external field, whereas in 5 3 we do  so for the situation where the field is spatially inhomo- 
geneous but sufficiently localized in space. The paper ends with a discussion section. 
There we pay some attention to  the question whether quantities such as cross sections 
do exist in the present case. 

2. Spatially homogeneous time-dependent external fields 

In the present section we consider the special case of a system consisting of two particles 
with internal structure which is subjected to a time-dependent external field, acting 
solely on the internal degrees of freedom of the particles (this model was introduced in 
0 1.1). Hence we can eliminate from the outset the centre-of-mass motion of the system 
and work in a Hilbert space 2 = Xrel 0 Xin', where Xrel = L2(W3)  refers to the 
relative motion of the two particles and Xint = 12(n) for fixed n < CO refers to their 
internal structure. (In fact Xi"' is the direct product of the two internal structure Hilbert 
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Scattering theory in a time-dependent externaljeld II 587 

spaces for each particle separately but this fact does not play an explicit role in the present 
section.) We shall denote the relative position vector of the two particles by r ,  their 
relative momentum by k and their reduced mass by m. The unperturbed hamiltonian 
reads 

(2.1) 

where Ire' and Iint are the identity operators on Xrel and Xi"' respectively, Krel = k2/2m, 
Kin' is the internal energy, which in matrix notation has the form 

H,(t) = Krel @ Iint + Ire' @ Kin' + I"' @ H'"'(t), 

0 1  0 
Kint = 1. 0 2 .  , ), (2 .2)  

whereas Hex'( t )  is the external field contribution to the internal hamiltonian. We assume 
that H e x t ( t )  is a bounded operator on Hint = 12(n) and that the conditions (i)-(iii) of I, 
0 2, are satisfied. Since the relative and internal parts of H,(t) commute, the evolution 
operator U,(t, s), describing the motion of the two non-interacting particles in the 
external field, factorizes in the following manner : 

(2.3) 

where UF'(t, s) is the internal motion evolution operator, acting on Xi"', whose infinitesi- 
mal generator at t = s is Kin'+ H'"'(t). 

The two particles are assumed to  interact through potentials which depend on the 
internal states of the particles. Therefore the self-adjoint operator Von X has the general 
form 

U,(t, s) = exp[ - iKrel(t - s)] @ U t ' ( t ,  s), 

V l l W  V12(r). . . $ 1 ( 4  v(r)[!:":'i = [ VzAr) Vy2(r!.;  :][y2(rj, (2.4) 

when acting on an element Y E 9" c H, where 9" is the domain of definition of V. For 
a fixed value of r we may consider V(r )  as being an operator on Hint = 12(n), which we 
tequire to be bounded, ie for a E Hin' 

where 1 . .  . l int  denotes the operator bound on 2'"' and /I . . . the vector norm 
(Z.Ia.l2)"* J J  = /Ict/ l int  on L2(n). Naturally, IV(r)lint depends in general on r e B 3  and we 
require that it be locally square integrable and also that 

I V(r)Iint = O(r- - Q) (2.6) 
for some fixed co > 0. The full hamiltonian of the system is 

H ( t )  = H , ( t ) +  V. (2.7) 
We 
and 
0 2.  

note that, due to  the restrictions imposed upon V,  this hamiltonian is self-adjoint 
can be written in the form (1-2.1). Moreover, it satisfies the conditions (iHiii) of I, 
Consequently we can apply the results of that section to  infer the existence of the 

time evolution operator U(t , s ) ,  having the properties stated in theorems 1-2.1 and 
1-2.2. In order to  prove the existence of the wave operators (1-3.1) we need the following 
result. 
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Lemma 2.1. Let 9r' denote the fundamental set 

9g' = { $,(r)l$,(k) = klk2k3 exp[ -k2/(2m)-ik . p], p E @} (2.8) 

of vectors in E(@) ,  where$&) is the Fourier transform of the function $(r) (a fundamen- 
tal set in a linear topological space is a set whose linear span is dense in that space). If 
V satisfies the above conditions then for any element Y E 9:" 0, Hint, the algebraic 
tensor product of 9;' and Hint, there is a constant Cy depending on Y and a fixed 
number 6 > 0 so that 

~ ~ V U o ( t , s ) ~ ~ ~  < Cyll+i(s-t)l-l-d (2.9) 

for all s. t E 93. 

Proof. Any Y E 9"' x Zint c 9:' 0, Hint is of the form 

and consequently 

(2.10) 

where $,,(r, t - s) = exp[ - iK"'(t - s)]$,(r) and 

(2.11) 

(2.12) 

where the unitarity of U t t ( t ,  s) has been used to arrive at the final expression. Consequent- 
ly, by Lebesgue's bounded convergence theorem, we conclude that 

 VU(^, s)Y, E E ( @ )  0 12(n) =J? 

and furthermore 

Thus we have reduced the problem to a form where the standard methods developed 
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Ill** * U 2  k j l  l~VUo(r,s)Yll dt < C, dtll+i(r-s)l-l-d 

for the case of structureless particles can be applied (cf PrugoveEki 1971, pp 541-3), thus 
arriving at the estimate 

<CC 

where 6 > 0 is fixed for a given interaction V ,  while C, is a constant that may depend on 
the parameter p E W3. This establishes the result for an arbitrary element of the Cartesian 
product 9;' x Hint. Since any element of the algebraic tensor product 9;' 0, Hint 
is a finite linear combination of elements of 9;' x Hint the result extends in a simple 
manner to this more general case and the proof of the lemma is completed. 

Theorem 2.1. If IV(r)lint is Lebesgue locally square-integrable in r and satisfies (2.6) for 
some co > 0 then the wave operators !2,(s) defined in (1-3.1) exist for any s E 9. 

We note that in the case n < x the conditions imposed upon V are satisfied if each 
component V,jr).= y i ( r )  satisfies these same conditions, ie it is locally square-integrable 
and vanishes at infinity faster than r - ' - ' l J  with cij > 0. 

Thus theorem 2.1 does not apply to potentials which behave asymptotically as 
Coulomb potentials yjr) or other long-range potentials. However, these cases can be 
easily included if 'renormalized' wave operators are introduced (see, for instance, 
PrugoveEki and Zorbas 1973). On the other hand, if n = CO the theorem requires a fast 
decrease in the interaction strength between the highly excited internal energy levels so 
as to ensure the existence of IV(r)lint for any r E W. 

It should also be pointed out that the present results for neutral particles with internal 
structure can be extended to the case when three or more such particles are simultaneously 
involved in the collision process. This generalization is especially straightforward when 
Vcontains only two-body potentials (cf PrugoveEki 1971, p 588) since then the entire 
method of proving the existence of channel wave operators is essentially the same as in 
the above mentioned two-body case. This result is relevant if one attempts to construct 
a kinetic theory for a gas of particles with internal structure in a radiation field, since it 
guarantees the existence of the long-time limits of n particle streaming operators (see 
also I ,  0 1). 

3. Spatially localized time-dependent fields 

The main problem considered in this section concerns the case of two particles with 
internal structure colliding in the presence of an external field which is localized in 
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space and hence depends on position as well as on time. This type of problem obviously 
does not possess translational invariance since the influence of the external field will now 
also depend on the position of the centre-of-mass of the two particles. Consequently, 
the centre-of-mass motion cannot be separated from the beginning, as was done in the 
preceding section. 

Let us denote by Xj the Hilbert space of the j th particle when it is isolated and 
constitutes an independent system. We assume that Zj = L 2 ( g 3 )  0 12(nj), where 
n j  < XI is the number of internal states of thejth particle. The Hilbert space A? of the 
two-particle system is now Z = Zl 0 A?,. The free hamiltonian H ,  is taken to be,the 
sum of the hamiltonians of the two free particles, so that 

(3.1) 

where K j  consists of a translational and an internal part, ie K j  = KY + K Y ,  and Zj is the 
identity operator on q.. In the sequel we shall denote by I7 and If' the identity operators 
on the Hilbert space associated with the translational and internal motion of the jth 
particle, respectively. The total hamiltonian H ( t )  has the form 

H ,  = K ,  0 Z , + I 1 @  K ,  

H ( t )  = H ,  + V -F H'"'(t), (3.2) 

where Vis described by a matrix on 12(n,) 0 12(n,) 

(3.3) 

whose matrix elements depend on the relative position vector of the two particles. The 
term H""'(t) describes the influence of the external field on the system and is assumed to 
be of the form 

(3.4) 

(see (1-1.5) for an example). 

in 12(nl) 0 l 2 ( n , )  is a locally square-integrable function in r = x1 -x2  E W 3  and that 
We shall assume throughout this section that the operator bound lV(r)lin, of V ( r )  

lV(r)lin, = O(r- l , -<o)  (3.5) 

for some c, > 0. In addition we shall also assume that hf"' is a bounded operator on 
12(nj) and that Iy(x, t)l is majorized by a time-independent locally square-integrable 
function T(x) for which 

r(x) = o ( 1 ~ j - 1 - y  (3.6) 

for some c 1  > 0 (y(x, t )  is essentially the amplitude of the external field). Under these 
conditions H(t) obviously satisfies the conditions (i)-(iii) of I, Q 2. Consequently, we can 
state that H ,  and H ( t )  have corresponding time-evolution operators 

U,(t - s) = exp[ - iH,(t - s)] 

and U(t, s), respectively, as specified in theorems 1-2.1 and 1-2.2, 
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Le": 3. i .  Let g j  denote the fundamental set 

{$p(x)t$p(k) = exp[-k2/(2mj)-* *PI, ~ € 9 ~ )  (3.7) 

in = L2(B3)), the Hilbert space associated with the translational motion of particlej. 
If H e x t ( t )  is as specified above, then for any element 'P of the algebraic tensor product 
9 = 9, 0, 12(n,) 0, ka2 0, I Z ( n 2 )  there is a constant CV), depending only on Y, so 
that 

1 j Hex'( t )  U,( t - s)Y I/ < C!J )[ 1 + 4(t - s ) ~ ]  - + - € 1 1 ~  (3.8) 

for all s, t E W. 

Proof. We shall only consider the case when Y has the form 

= $ 1  0 a ,  O $2 @a,, $ j E g j ,  r j  E 12(nj), (3.9) 

since the more general case corresponds to a finite linear combination of expressions of 
this type. In view of the form (3.4) of Hext ( t ) ,  we have in obvious notation 

llHex'(t)~,(t -s)YII 

< I/ H',"'(t) exp[ - iK:'(t - s)l$ O exp[ - iK?'(t - s)lal I /  / I  $2 O a2 I /  

+1-2  

+ l - 2 ,  

where I /  . . . I /  j ,int and I . . . I j , i n l  denote the norm and operator bound on 12(nj). The desired 
result follows now from standard estimates of the above intergrals which are valid under 
the conditions imposed on T(x) (cf Kat0 1966, pp 534, 535). 

Lemma 3.2. Suppose V is as specified at the beginning of this section. Then for any Y 
in the domain 9 defined in lemma 3.1 there is a constant C$) such that 

(3.10) / I  VU,(t - s)Y 1 1  < C$)[ 1 + 4(t - s)2] 

for all s, t E W. 

Proof. It is obviously again sufficient to prove the lemma for elements Y of 9 which 
have the form (3.9). However, since each element of the matrix (3.3), which defines V,  
is a function of the relative position vector only, we take advantage of this fact and 
recast $pl(kl)$p2(k2), in the form ~&m(K)$$(k), where K is the centre-of-mass momentum, 
k = k, - k2 and $im(K) = exp[ - K 2 / ( 2 M )  - ip' . 4, $;!(k) = exp[ - k2/(2m)- ip" . k ] .  
Here M = m ,  + m 2  and m = m,m2/(ml +m2) ,  whereas p' and p" are defined through 

P1 = (m,")p'+p'', p2 = (mz/M)p' - P". 

After this transformation is performed and H, is written in the form (in self-explanatory 
notation) 

H, = K" @ Ire' @ lint + I" @ Krel @ Iin' + I" Ire' @ Kin', 
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we immediately arrive at the following estimate : 

l lVUo(t)~l l  = II1(l"p'I/fm//Vexp[-i(Kre'+Kin')t]$~! 0 a i  0 a2 / l re l , in t  

G / I $Cpm/ Icm l l~~  II ~ , in t t la2112 , in t  dr~V(~)l~, l (exp[- i~'"'~I1(1~~)(r) l2  

and the rest of the proof follows from the same standard arguments as used at  the end of 
the proof of lemma 3.1. 

(J-@ 

Theorem 3.1. If V and Hex'( t )  have the properties stated in this section then the wave 
operators Q,(s) as defined in (1-3.1) exist for all s E W. 

Pro05 Since the linear span of each gj  is dense in L2(W3) by Wiener's theorem (see, for 
instance, PrugoveEki 1971), it follows that 9 is dense in 2. On the other hand, by lemmas 
3.1 and 3.2, for any '€' E 9 

/ I  [ v + Hext(t)] u,(t - s)\YI/ G (C',"+ C$)) [I  +4(t - s ) ~ ] - + - # / ~ ,  

where Q = min(co,cl). This implies that theorem 1-3.2 is applicable since 9 c gS as a 
consequence of the above inequality. The wave operators Q,(s), whose existence is 
established in the above theorem, refer to the case where the actual motion of the 
system is compared with the motion of two free particles with no field-influence present. 
In fact the case considered in this section may, depending on the actual form of Hex'( t ) ,  
give rise to a multi-channel situation. This happens if the field is able to trap one or both 
particles in a localized space region. (For charged particles this possibility certainly 
exists, examples being devices such as cyclotrons and storage rings.) Thus there may be 
open channels referring to the final situation, where, for instance, one particle is trapped 
and the other asymptotically free. Theorem 3.1 then refers to the channel where both 
particles become asymptotically free. 

I 

4. Discussion 

In this section we discuss various more of less unrelated aspects of the scattering of 
particles in a field. 

4.1. Plane-waveJields 

So far we have not considered external fields of the plane-wave type, ie HSx'(t) in (3.4) of 
the form 

H?X'(t) = cos (k . xj - wt,ry 0 h5"'. (4.1 ) 

In this case, where the field is not localized in space, we can no longer compare the true 
motion of the system with that of two free particles in the absence of a field. Instead we 
have to consider integrals of the type 

where U,(t,s) is the evolution operator associated with a system, consisting of two 
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non-interacting particles in a field. This situation was encountered in 0 2 but in that case 
the relative translational motion was decoupled from the internal motion. Here this 
decoupling does not occur, however one might expect that, at least for weak fields, the 
presence of the time-dependent field leads to some slight modification of the free- 
particle motion, such that the wave operators still exist. Present day techniques, 
however, make use of the explicit form of U,(t, s)Y, for a conveniently chosen set of Y. 
In the present case, due to the complicated form of U,@, s), this does not seem to be 
possible. An alternative might be the expansion of U,@, s) in (4.2) in terms of H e x l ( t )  (see 
the proof of lemma 1-4.2 for this expansion) and to estimate each term separately. As far 
as we could determine, by considering the first field-dependent term in the expansion, 
this procedure does not seem to be very promising. If the field does not vary appreciably 
over the range of the potential, it makes sense to consider a 'long wavelength' approxi- 
mation, ie x j  in (4.1) is replaced by the centre-of-mass position variable X ,  so that 

Hext ( t )  = cos(k. X-mt)(I',' @ H y ' +  I ;  @ Hy'). (4.3) 

In this approximation the relative free-particle motion is decoupled from the centre-of- 
mass and internal motion and under the usual conditions on the potential (see $4 2 and 3) 
the existence of the wave operators can be established. 

4.2. Highlfrequency behaviour 

In I, 4 4, we considered the special case of an external field with frequency U. I t  is easily 
verified from the estimates made in $8 2 and 3 that the conditions of theorem 1-4.1 are 
fulfilled in both cases. In particular the field free wave operators aim) exist and the fre- 
quency-dependent wave operators Q(2) converge strongly to the former for 101 -+ x. 

4.3. Scattering operator ana' cross sections 

In analogy with the field-free case we shall say that $ E 2 is a scattering state if there 
exist I)'", $""'E Y?, such that (Il/(t) = U(t ,  s)$) 

lim 1 1  $(t)  - U,(t, s)$'"ll = 0, 

lim llIl/(t)- U& s)$OU'lI = 0, 

f + - m  

f + + m  

(4.4) 

in which case 

IpJ' = n*,(s)n-(s)$'" = S(s)$'". (4.5) 

In the present case we do not know, whether the scattering operator S(s )  is unitary on 
H, ie whether the collection of all in-states as well as the collection of all out-states 
coincides with X The known methods (see, for instance, PrugoveEki 1971,o 5 )  to prove 
the completeness of the wave operators (ie the relation W,, = 9,- which entails the 
unitary of S(s)) cannot be applied to the present case as the hamiltonian is time dependent, 
preventing the formulation of a stationary version of the scattering problem. Let us for 
the moment assume that the completeness problem is solved in the affirmative and see 
whether cross sections can be defined in terms of S(s). As a preliminary we note that for 
a given E H it is easily shown that for any A E B(%) which commutes with U,@, s) 
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for every t ,  s E W 

( 4 . 6 ~ )  lim ($ ( t )JAY( t ) )  = ($ ' "~ I I$ '~ )  
t + - m  

lim ($( t ) lA$( t ) )  = ($oUtlA$ouf) 
I++ (z; 

= (S(S)$'"~AS(S)$'"> = (S(O)U,(O, s)$'"lAS(O)UO(O, s)$ '~) .  (3.6b) 

Here (1-3.7) and the commutation property of A and U,(t, s) have been used to arrive at 
the last equality in (4.6b). 

Let us consider the situation where asymptotically, for r 4  - CO, $ ( t )  is confined to a 
certain subspace &- of %, P- being the projector upon this subspace. We assume that 
P -  commutes with U,(t, s) for every real t ,  s. Then, for normalized (and hence 
normalized $( t ) ) ,  the above property of $ ( t )  can be formulated as 

lim ( $ ( t ) l P - $ ( t ) )  = 1. (4.7) 
t + - m  

Thus, according to (4.6a), ($'"IP-$'") = 1, so that $in E 8- . 
Let W = W ( P - ,  $'", P + )  be the probability of finding the system for large positive 

times in a state, contained in a second subspace &+, where P+ , the projector upon 
&+ , also commutes with U,(t, s) for every t ,  s. Then 

(4.8) 

where (4.6b) has been used. 
To relate the scattering operator to a cross section the usual approach in the theory 

of potential scattering consists of choosing special projectors P ,  , related to cones in 
relative momentum space. Afterwards the limit is taken where the aperture of the cone 
associated with P ,  goes to zero and where the overall effect of a large number of individ- 
ual two-parficle scattering processes is considered. This procedure then results in the 
standard relation between scattering operator and differential cross section (see Prug- 
oveEki 1971, chap 5 for details). We shall not try to perform this program for the case 
at hand but rather we shall point out a few features, specific for the present situation. 

(i) Let us first turn our attention to the case considered in 0 3, where the field is 
localized in space. Thus we can imagine a situation where the production apparatus for 
the particles as well as the detection system are well outside the field region. Hence we 
may assume that the particles are produced in a well defined internal state, let us say the 
eigenstate a of Kin', and that the detector measures the number of particles in a second 
eigenstate b of Kin'. Thus we are naturally led to projection operators P ,  of the type 

P -  = P" @ P a ,  P ,  = PI: 0 P,, (4.9) 

where P,  and Ps are the projectors upon the internal states a and b, respectively. Ob- 
viously P ,  commute with U,(t, s) = Ug(t,  s )  @ Ut ' ( t ,  s) ,  provided P'; commute with 
its translational part. It is also dear, from the relation UF'(t, s)P, = exp[-iw,(t-s)]P, 
for y = a,b, that the internal parts of the free evolution operator, occurring in (4.8), 
cancel in the present situation. For the translational motion we can again consider the 
scattering from cones into cones. There is, however, the complication that the centre- 
of-mass motion is not decoupled from the motion of the rest of the system. Thus we 
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have to consider separate cones for each of the two colliding particles. (Obviously, 
depending upon the initial preparation of the system, the two particles may collide 
within the field region but the collision process may also take place outside this area.) 
In fact the situation is somewhat reminiscent of a three-particle scattering process, 
once the centre-of-mass motion has been decoupled in that case. 

Apart from the above complications, there seem to be no further problems in obtain- 
ing the desired expression for the differential cross section for scattering from internal 
states a into internal states f l .  We note further that at the end of the calculation the 
translational parts of Uo(O, s) also disappear from the end result, ie S(s) leads to the same 
cross section for each value of s. (This can be seen heuristically by substituting plane- 
wave eigenstates of K" for the translational part of +bin in relation (4.8)) 

We close this part of the discussion by remarking that the present result refers to the 
situation where the two particles are outside the field region for both large positive and 
negative times. A different 'channel' may occur if initially one particle is trapped inside 
this area. This situation was not considered in $ 3. 

(ii) Next we consider the situation encountered in 0 2, where the external field extends 
over all space. Although the asymptotic translational motion is not affected by the 
field and the centre-of-mass motion can be decoupled due to the assumed homogeneity 
of the field, we face the problem that the internal motion of the particles is influenced by 
the field in the production and detection areas also. Now we can imagine a detection 
system which measures the number of particles with a certain momentum, irrespective 
of their internal states. (In the absence of a field this would result in the measurement of 
a differential cross section, summed over the final internal states.) This would lead to 
a P ,  of the form P ,  = P': 0 lint, where P'; is of the standard type. The real problem 
occurs at the production end. The question is whether we can produce particles in a 
well defined internal state under the present circumstances and, if so, whether the 
projector upon this state commutes with Uo(t,  s) for every t and s. It may of course 
happen that there are no one-dimensional subspaces of YP" which are left invariant by 
U p ( t ,  s). In this case we can consider in-states which are mixed, ie density operators 
pi". If the number n ,  + n ,  of internal states is finite, we can consider a situation where 
all pure states are equally probable initially, so that pin = ( n l  +n,)- 'lint and 
P -  = P'I 0 li"' commutes with U,(t,s), provided this is the case for P'I and U;(t,s). 
(In practice, for a two-level system an equal distribution over the two states with eriergy 
difference h A o  may be achieved by means of a strong resonant field in the production 
region which causes saturation.) 

Obviously one can avoid the penetration of the time-dependent field into the 
asymptotic regions in actual scattering experiments. The situation of $ 2  is relevant, 
however, in a number of statistical-mechanical problems. There the existence of the 
wave operators is quite important, but, since the results of individual scattering processes 
are not monitored, this is not so for the concept of cross section. 
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